Constitution and Structural Chemistry of T-Mn Systems (T = Sc to Ta)

P. Rogl¹, X. Yan¹, X.Q. Chen¹, P. Broz², J. Vrestal², J. Bursik³, J. Pavlu², B. Smetana⁴, G. Rogl¹, A. Grytsiv¹, H. Michor⁵

¹Institute of Materials Chemistry, University of Vienna, 1090 Wien, Austria
²Department of Chemistry, Fac. of Science, Masaryk Univ., Brno, Czech Republic
³Institute of Physics of Materials, Czech Acad. of Sci., Brno, Czech Republic
⁴Faculty of Materials Science and Technology, VSB-TU Ostrava, Czech Republic
⁵Institute of Solid State Physics, TU-Wien, 1040 Wien, Austria

Manganese is one of the important alloying partners in many structural alloy systems with Laves-phases as the dominant precipitiates. Consequently, the T-Mn phase diagrams (T is an early transition metal from Sc to Ta) and the TMn₂ Laves phases are part of numerous ternary and higher order systems of technological importance, involving hydrogen storage materials, high strength steels (exceeding a yield strength of 700 MPa) and intermetallics in aerospace and/or earth-bound turbine applications and last but not least high strength materials for biomedical applications.

Based on our systematic investigations (phase relations, X-ray and neutron structure analyses, SEM, TEM electron diffraction and physical property studies) of binary and ternary Laves phase systems with Mn, the presentation will provide a comprehensive overview on (i) the structural chemistry of the corresponding Mn-based Laves phases, (ii) their thermodynamic stability from calorimetric measurements but also from DFT calculations, (iii) the phase relations in binary T-Mn systems including CALPHAD-type thermodynamic assessments, and (iv) evaluation of physical properties (resistivity, magnetism, specific heat) including also mechanical properties.