Aleksandra Radenovic, Nanopores in 2D materials ‐ opportunities and challenges

Aleksandra Radenovic

Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne

Atomically thin nanopore membranes are considered to be a promising approach to achieve single base resolution with the ultimate aim of rapid and cheap DNA sequencing. Recently, we made advances in using nanopore platform for its integration with 2D materials such as graphene or MoS2. Translocation of various types of DNA exhibits a signal amplitude that is five times higher than in the case of solid-state Si3N4 membranes and a SNR of more than 10. Although single nucleotide identification and DNA sequencing using biological pores have already been demonstrated their fragility, difficulties related to measuring pA-range ionic currents together with their dependence on biochemical reagents, make solid state nanopores an attractive alternative.

In this talk I will address novel applications that address identification of single nucleotides but as well go beyond DNA sequencing. We use novel solid state nanopore platform based on atomically thin nanopore membranes in 2D materials such as graphene or molybdenum disulfide for DNA detection, sequencing, water desalination and osmotic power generation.

Plenary lectures - YUCOMAT 2017

member since 2008