Sotiris E. Pratsinis: Combustion spray synthesis of nanostructured materials: from carbon black to breath sensors
YUCOMAT 2021
Herceg Novi, Montenegro, 2021
YUCOMAT 2021
Openning
YUCOMAT 2021
Competition : : Best Poster Presentation
YUCOMAT 2021
Competition : : Best Poster Presentation
YUCOMAT 2021
MRS Serbia
YUCOMAT 2021
Competition : : Best Poster Presentation
YUCOMAT 2021
Yury Gogotsi - Award for a Lasting and Outstanding Contribution to Materials Science and Engineering
YUCOMAT 2021
Herceg Novi, Montenegro, 2021
YUCOMAT 2021
In Between
YUCOMAT 2021
Awards & Closing
YUCOMAT 2021
Herceg Novi, Montenegro, 2021
YUCOMAT 2021
Audience
YUCOMAT 2021
Discussion
YUCOMAT 2021
In Between
YUCOMAT 2021
Poster Session
YUCOMAT 2021
Audience
YUCOMAT 2021
Discussion
YUCOMAT 2021
Audience - outside
YUCOMAT 2021
MRS Serbia
YUCOMAT 2021
Discussion
YUCOMAT 2021
Herceg Novi, Montenegro
YUCOMAT 2021
In Between
YUCOMAT 2021
MRS Serbia
YUCOMAT 2021
Herceg Novi, Montenegro
YUCOMAT 2021
MRS Serbia
YUCOMAT 2021
Audience
YUCOMAT 2021
Herceg Novi, Montenegro

Sotiris E. Pratsinis

 

Particle Technology Laboratory, Institute of Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), CH-8092 Zurich, Switzerland http://www.ptl.ethz.ch/

 

The lecture will start with a fascinating overview of combustion aerosol technology from ancient China and the bible printing of Gutenberg to the current manufacture of commodities.  Recent advances in particle formation and growth through discrete element modeling and molecular dynamics allow now optimal process design, away from the Edisonian approaches of the past. In specific, the rapid attainment of asymptotic agglomerate structure and self-preserving size distribution by coagulation greatly facilitate scalable process design for material synthesis.1

This leads to scalable synthesis of sophisticated nanoparticles with controlled morphology size and composition by flame spray pyrolysis putting new high value products (like nanosilver and carbon-coated Co nanoparticles) in the market already while several promising ones are emerging such as single atom catalysts and chemoresistive gas sensors for breath analysis. As time permits, the latter are highlighted for highly selective monitoring of acetone, NH3, isoprene and even formaldehyde. These are tracers of body fat burning, end stage renal disease, cholesterol and indoor air pollution, respectively, while sensor arrays are assembled to sniff–out earthquake victims.2

  1. Aerosol-based Technologies in Nanoscale Manufacturing: from Functional Materials to Devices through Core Chemical Engineering, AIChE J., 56, 3028-3035 (2010).
  2. A.T. Güntner, S. Abegg, K. Königstein, P.A. Gerber, A. Schmidt-Trucksäss, S.E. Pratsinis, Breath Sensors for Health Monitoring, ACS Sensors, 4, 268-280 (2019).

Plenary lectures - YUCOMAT 2019

member since 2008